Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 27(2): 108805, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38299111

RESUMO

A group of keratin intermediate filament genes, the type II KRT6A-C and type I KRT16 and KRT17, are deemed stress responsive as they are induced in keratinocytes of surface epithelia in response to environmental stressors, in skin disorders (e.g., psoriasis) and in carcinomas. Monitoring stress keratins is widely used to identify keratinocytes in an activated state. Here, we analyze single-cell transcriptomic data from healthy and diseased human skin to explore the properties of stress keratins. Relative to keratins occurring in healthy skin, stress-induced keratins are expressed at lower levels and show lesser type I-type II pairwise regulation. Stress keratins do not "replace" the keratins expressed during normal differentiation nor reflect cellular proliferation. Instead, stress keratins are consistently co-regulated with genes with roles in differentiation, inflammation, and/or activation of innate immunity at the single-cell level. These findings provide a roadmap toward explaining the broad diversity and contextual regulation of keratins.

2.
Curr Opin Cell Biol ; 86: 102303, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38113712

RESUMO

The nuclear-localized lamins have long been thought to be the only intermediate filaments (IFs) with an impact on the architecture, properties, and functions of the nucleus. Recent studies, however, uncovered significant roles for IFs other than lamins (here referred to as "non-lamin IFs") in regulating key properties of the nucleus in various cell types and biological settings. In the cytoplasm, IFs often occur in the perinuclear space where they contribute to local stiffness and impact the shape and/or the integrity of the nucleus, particularly in cells under stress. In addition, selective non-lamin IF proteins can occur inside the nucleus where they partake in fundamental processes including nuclear architecture and chromatin organization, regulation of gene expression, cell cycle progression, and the repair of DNA damage. This text reviews the evidence supporting a role for non-lamin IF proteins in regulating various properties of the nucleus and highlights opportunities for further study.


Assuntos
Núcleo Celular , Proteínas de Filamentos Intermediários , Laminas/metabolismo , Proteínas de Filamentos Intermediários/metabolismo , Núcleo Celular/metabolismo , Filamentos Intermediários/metabolismo , Membrana Nuclear/metabolismo
3.
J Invest Dermatol ; 144(4): 748-754, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38099888

RESUMO

Pachyonychia congenita (PC) is a dominantly inherited genetic disorder of cornification. PC stands out among other genodermatoses because despite its rarity, it has been the focus of a very large number of pioneering translational research efforts over the past 2 decades, mostly driven by a patient support organization, the Pachyonychia Congenita Project. These efforts have laid the ground for innovative strategies that may broadly impact approaches to the management of other inherited cutaneous and noncutaneous diseases. This article outlines current avenues of research in PC, expected outcomes, and potential hurdles.


Assuntos
Ceratodermia Palmar e Plantar , Paquioníquia Congênita , Humanos , Paquioníquia Congênita/diagnóstico , Paquioníquia Congênita/genética , Paquioníquia Congênita/terapia , Ceratodermia Palmar e Plantar/genética , Administração Cutânea , Apoptose , Diferenciação Celular , Mutação
4.
bioRxiv ; 2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37873256

RESUMO

Neutrophils contribute to the pathogenesis of chronic inflammatory skin diseases. Little is known about the source and identity of the signals mediating their recruitment in inflamed skin. We used the phorbol ester TPA and UVB, alone or in combination, to induce sterile inflammation in mouse skin and assess whether keratinocyte-derived signals impact neutrophil recruitment. A single TPA treatment results in a neutrophil influx in the dermis that peaks at 12h and resolves within 24h. A second TPA treatment or a UVB challenge, when applied at 24h but not 48h later, accelerates, amplifies, and prolongs neutrophil infiltration. This transient amplification response (TAR) is mediated by local signals in inflamed skin, can be recapitulated in ex vivo culture, and involves the K17-dependent sustainment of protein kinase Cα (PKCα) activity and release of neutrophil chemoattractants by stressed keratinocytes. We show that K17 binds RACK1, a scaffold essential for PKCα activity. Finally, analyses of RNAseq data reveal the presence of a transcriptomic signature consistent with TAR and PKCα activation in chronic inflammatory skin diseases. These findings uncover a novel, transient, and keratin-dependent mechanism that amplifies neutrophil recruitment to the skin under stress, with direct implications for inflammatory skin disorders.

5.
Clin Cancer Res ; 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37851080

RESUMO

PURPOSE: Pancreatic ductal adenocarcinoma (PDAC) is generally divided in two subtypes, classical and basal. Recently, single cell RNA sequencing has uncovered the co-existence of basal and classical cancer cells, as well as intermediary cancer cells, in individual tumors. The latter remains poorly understood; here, we sought to characterize them using a multimodal approach. EXPERIMENTAL DESIGN: We performed subtyping on a single cell RNA sequencing dataset containing 18 human PDAC samples to identify multiple intermediary subtypes. We generated patient-derived PDAC organoids for functional studies. We compared single cell profiling of matched blood and tumor samples to measure changes in the local and systemic immune microenvironment. We then leveraged longitudinally patient-matched blood to follow individual patients over the course of chemotherapy. RESULTS: We identified a cluster of KRT17-high intermediary cancer cells that uniquely express high levels of CXCL8 and other cytokines. The proportion of KRT17High/CXCL8+ cells in patient tumors correlated with intra-tumoral myeloid abundance, and, interestingly, high pro-tumor peripheral blood granulocytes, implicating local and systemic roles. Patient-derived organoids maintained KRT17High/CXCL8+cells and induced myeloid cell migration in an CXCL8-dependent manner. In our longitudinal studies, plasma CXCL8 decreased following chemotherapy in responsive patients, while CXCL8 persistence portended worse prognosis. CONCLUSIONS: Through single cell analysis of PDAC samples we identified KRT17High/CXCL8+ cancer cells as an intermediary subtype, marked by a unique cytokine profile and capable of influencing myeloid cells in the tumor microenvironment and systemically. The abundance of this cell population should be considered for patient stratification in precision immunotherapy.

6.
J Clin Invest ; 133(22)2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37768734

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a progressive scarring disease arising from impaired regeneration of the alveolar epithelium after injury. During regeneration, type 2 alveolar epithelial cells (AEC2s) assume a transitional state that upregulates multiple keratins and ultimately differentiate into AEC1s. In IPF, transitional AECs accumulate with ineffectual AEC1 differentiation. However, whether and how transitional cells cause fibrosis, whether keratins regulate transitional cell accumulation and fibrosis, and why transitional AECs and fibrosis resolve in mouse models but accumulate in IPF are unclear. Here, we show that human keratin 8 (KRT8) genetic variants were associated with IPF. Krt8-/- mice were protected from fibrosis and accumulation of the transitional state. Keratin 8 (K8) regulated the expression of macrophage chemokines and macrophage recruitment. Profibrotic macrophages and myofibroblasts promoted the accumulation of transitional AECs, establishing a K8-dependent positive feedback loop driving fibrogenesis. Finally, rare murine transitional AECs were highly senescent and basaloid and may not differentiate into AEC1s, recapitulating the aberrant basaloid state in human IPF. We conclude that transitional AECs induced and were maintained by fibrosis in a K8-dependent manner; in mice, most transitional cells and fibrosis resolved, whereas in human IPF, transitional AECs evolved into an aberrant basaloid state that persisted with progressive fibrosis.


Assuntos
Fibrose Pulmonar Idiopática , Queratina-8 , Humanos , Animais , Camundongos , Queratina-8/metabolismo , Células Epiteliais Alveolares , Fibrose Pulmonar Idiopática/metabolismo , Células Epiteliais/metabolismo , Diferenciação Celular
7.
BMC Mol Cell Biol ; 24(1): 26, 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37592256

RESUMO

BACKGROUND: Heterogeneous nuclear ribonucleoprotein K (HNRNPK) regulates pre-mRNA processing and long non-coding RNA localization in the nucleus. It was previously shown that shuttling of HNRNPK to the cytoplasm promotes cell proliferation and cancer metastasis. However, the mechanism of HNRNPK cytoplasmic localization, its cytoplasmic RNA ligands, and impact on post-transcriptional gene regulation remain uncharacterized. RESULTS: Here we show that the intermediate filament protein Keratin 19 (K19) directly interacts with HNRNPK and sequesters it in the cytoplasm. Correspondingly, in K19 knockout breast cancer cells, HNRNPK does not localize in the cytoplasm, resulting in reduced cell proliferation. We comprehensively mapped HNRNPK binding sites on mRNAs and showed that, in the cytoplasm, K19-mediated HNRNPK-retention increases the abundance of target mRNAs bound to the 3' untranslated region (3'UTR) at the expected cytidine-rich (C-rich) sequence elements. Furthermore, these mRNAs protected by HNRNPK in the cytoplasm are typically involved in cancer progression and include the p53 signaling pathway that is dysregulated upon HNRNPK knockdown (HNRNPK KD) or K19 knockout (KRT19 KO). CONCLUSIONS: This study identifies how a cytoskeletal protein can directly regulate gene expression by controlling the subcellular localization of RNA-binding proteins to support pathways involved in cancer progression.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , RNA Mensageiro/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/genética , Queratina-19 , Citoplasma , Regiões 3' não Traduzidas/genética
9.
J Cell Sci ; 135(20)2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36285538

RESUMO

A large group of keratin genes (n=54 in the human genome) code for intermediate filament (IF)-forming proteins and show differential regulation in epithelial cells and tissues. Keratin expression can be highly informative about the type of epithelial tissue, differentiation status of constituent cells and biological context (e.g. normal versus diseased settings). The foundational principles underlying the use of keratin expression to gain insight about epithelial cells and tissues primarily originated in pioneering studies conducted in the 1980s. The recent emergence of single cell transcriptomics provides an opportunity to revisit these principles and gain new insight into epithelial biology. Re-analysis of single-cell RNAseq data collected from human and mouse skin has confirmed long-held views regarding the quantitative importance and pairwise regulation of specific keratin genes in keratinocytes of surface epithelia. Furthermore, such analyses confirm and extend the notion that changes in keratin gene expression occur gradually as progenitor keratinocytes commit to and undergo differentiation, and challenge the prevailing assumption that specific keratin combinations reflect a mitotic versus a post-mitotic differentiating state. Our findings provide a blueprint for similar analyses in other tissues, and warrant a more nuanced approach in the use of keratin genes as biomarkers in epithelia.


Assuntos
Queratinócitos , Queratinas , Camundongos , Animais , Humanos , Queratinas/genética , Queratinas/metabolismo , Epitélio/metabolismo , Queratinócitos/metabolismo , Células Epiteliais/metabolismo , Diferenciação Celular/genética
10.
Elife ; 112022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35377313

RESUMO

Mapping intermediate filaments in three dimensions reveals that the organization of these filaments differs across cell types.


Assuntos
Citoesqueleto , Filamentos Intermediários , Filamentos Intermediários/metabolismo
11.
Cell Stem Cell ; 28(3): 365-366, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33667355

RESUMO

In this issue of Cell Stem Cell, Ning et al. (2021) demonstrate that contractility in differentiating, suprabasally located keratinocytes acts non-cell-autonomously to regulate the replication and differentiation of the stem/progenitor keratinocytes in the basal layer of epidermis. This finding expands our understanding of the niche that regulates stem/progenitor cells in skin.


Assuntos
Epigenômica , Fatores de Transcrição , Animais , Diferenciação Celular , Células Epidérmicas , Epiderme , Queratinócitos , Células-Tronco
12.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33762306

RESUMO

High levels of the intermediate filament protein keratin 17 (K17) are associated with poor prognoses for several human carcinomas. Studies in mouse models have shown that K17 expression is positively associated with growth, survival, and inflammation in skin and that lack of K17 delays onset of tumorigenesis. K17 occurs in the nucleus of human and mouse tumor keratinocytes where it impacts chromatin architecture, gene expression, and cell proliferation. We report here that K17 is induced following DNA damage and promotes keratinocyte survival. The presence of nuclear K17 is required at an early stage of the double-stranded break (DSB) arm of the DNA damage and repair (DDR) cascade, consistent with its ability to associate with key DDR effectors, including γ-H2A.X, 53BP1, and DNA-PKcs. Mice lacking K17 or with attenuated K17 nuclear import showed curtailed initiation in a two-step skin carcinogenesis paradigm. The impact of nuclear-localized K17 on DDR and cell survival provides a basis for the link between K17 induction and poor clinical outcomes for several human carcinomas.


Assuntos
Carcinoma/genética , Reparo do DNA , Queratina-17/metabolismo , Queratinas/metabolismo , Neoplasias Experimentais/genética , 9,10-Dimetil-1,2-benzantraceno/administração & dosagem , 9,10-Dimetil-1,2-benzantraceno/toxicidade , Transporte Ativo do Núcleo Celular , Animais , Carcinogênese/induzido quimicamente , Carcinogênese/genética , Carcinogênese/patologia , Carcinoma/induzido quimicamente , Carcinoma/patologia , Núcleo Celular/metabolismo , Sobrevivência Celular/genética , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Feminino , Técnicas de Inativação de Genes , Células HeLa , Humanos , Microscopia Intravital , Queratina-17/genética , Queratinócitos , Queratinas/genética , Masculino , Camundongos Knockout , Neoplasias Experimentais/induzido quimicamente , Neoplasias Experimentais/patologia , Imagem com Lapso de Tempo
14.
Curr Opin Cell Biol ; 68: 155-162, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33246268

RESUMO

After the initial discovery of intermediate filament (IF)-forming proteins in 1968, a decade would elapse before they were revealed to comprise a diverse group of proteins which undergo tissue-, developmental stage-, differentiation-, and context-dependent regulation. Our appreciation for just how large (n = 70), conserved, complex, and dynamic IF genes and proteins are became even sharper upon completion of the human genome project. While there has been extraordinary progress in understanding the multimodal roles of IFs in cells and tissues, even revealing them as direct causative agents in a broad array of human genetic disorders, the link between individual IFs and cell differentiation has remained elusive. Here, we review evidence that demonstrates a role for IFs in lineage determination, cell differentiation, and tissue homeostasis. A major theme in this review is the function of IFs as sensors and transducers of mechanical forces, intersecting microenvironmental cues and fundamental processes through cellular redox balance.


Assuntos
Diferenciação Celular , Filamentos Intermediários/fisiologia , Mecanotransdução Celular , Animais , Humanos , Proteínas de Filamentos Intermediários/química , Proteínas de Filamentos Intermediários/genética , Proteínas de Filamentos Intermediários/metabolismo , Filamentos Intermediários/química
15.
J Cell Sci ; 133(20)2020 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-33008845

RESUMO

Keratin 17 (KRT17; K17), a non-lamin intermediate filament protein, was recently found to occur in the nucleus. We report here on K17-dependent differences in nuclear morphology, chromatin organization, and cell proliferation. Human tumor keratinocyte cell lines lacking K17 exhibit flatter nuclei relative to normal. Re-expression of wild-type K17, but not a mutant form lacking an intact nuclear localization signal (NLS), rescues nuclear morphology in KRT17-null cells. Analyses of primary cultures of skin keratinocytes from a mouse strain expressing K17 with a mutated NLS corroborated these findings. Proteomics screens identified K17-interacting nuclear proteins with known roles in gene expression, chromatin organization and RNA processing. Key histone modifications and LAP2ß (an isoform encoded by TMPO) localization within the nucleus are altered in the absence of K17, correlating with decreased cell proliferation and suppression of GLI1 target genes. Nuclear K17 thus impacts nuclear morphology with an associated impact on chromatin organization, gene expression, and proliferation in epithelial cells.This article has an associated First Person interview with the first author of the paper.


Assuntos
Queratina-17 , Queratinócitos , Animais , Proliferação de Células/genética , Cromatina/genética , Queratina-17/genética , Camundongos , Pele
16.
Elife ; 92020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32369015

RESUMO

The intermediate filament protein keratin 14 (K14) provides vital structural support in basal keratinocytes of epidermis. Recent studies evidenced a role for K14-dependent disulfide bonding in the organization and dynamics of keratin IFs in skin keratinocytes. Here we report that knock-in mice harboring a cysteine-to-alanine substitution at Krt14's codon 373 (C373A) exhibit alterations in disulfide-bonded K14 species and a barrier defect secondary to enhanced proliferation, faster transit time and altered differentiation in epidermis. A proteomics screen identified 14-3-3 as K14 interacting proteins. Follow-up studies showed that YAP1, a transcriptional effector of Hippo signaling regulated by 14-3-3sigma in skin keratinocytes, shows aberrant subcellular partitioning and function in differentiating Krt14 C373A keratinocytes. Residue C373 in K14, which is conserved in a subset of keratins, is revealed as a novel regulator of keratin organization and YAP function in early differentiating keratinocytes, with an impact on cell mechanics, homeostasis and barrier function in epidermis.


Assuntos
Proteínas 14-3-3/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ciclo Celular/metabolismo , Epiderme/metabolismo , Queratina-14/metabolismo , Proteínas 14-3-3/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Animais , Proteínas de Ciclo Celular/fisiologia , Epiderme/fisiologia , Epiderme/ultraestrutura , Feminino , Técnicas de Introdução de Genes , Homeostase , Queratina-14/fisiologia , Queratinócitos/metabolismo , Queratinócitos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Transmissão , Proteínas de Sinalização YAP
17.
Mol Biol Cell ; 31(11): 1103-1111, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32213122

RESUMO

Mitochondria fulfill essential roles in ATP production, metabolic regulation, calcium signaling, generation of reactive oxygen species (ROS), and additional determinants of cellular health. Recent studies have highlighted a role for mitochondria during cell differentiation, including in skin epidermis. The observation of oxidative stress in keratinocytes from Krt16 null mouse skin, a model for pachyonychia congenita (PC)-associated palmoplantar keratoderma, prompted us to examine the role of Keratin (K) 16 protein and its partner K6 in regulating the structure and function of mitochondria. Electron microscopy revealed major anomalies in mitochondrial ultrastructure in late stage, E18.5, Krt6a/Krt6b null embryonic mouse skin. Follow-up studies utilizing biochemical, metabolic, and live imaging readouts showed that, relative to controls, skin keratinocytes null for Krt6a/Krt6b or Krt16 exhibit elevated ROS, reduced mitochondrial respiration, intracellular distribution differences, and altered movement of mitochondria within the cell. These findings highlight a novel role for K6 and K16 in regulating mitochondrial morphology, dynamics, and function and shed new light on the causes of oxidative stress observed in PC and related keratin-based skin disorders.


Assuntos
Queratinas/metabolismo , Mitocôndrias/metabolismo , Pele/metabolismo , Animais , Proteínas do Citoesqueleto , Epiderme , Feminino , Queratina-16/genética , Queratina-16/metabolismo , Queratina-6/genética , Queratina-6/metabolismo , Queratinócitos/metabolismo , Queratinócitos/fisiologia , Queratinas/fisiologia , Ceratodermia Palmar e Plantar , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/fisiologia , Mutação , Paquioníquia Congênita
18.
Structure ; 28(3): 355-362.e4, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-31995743

RESUMO

Intermediate filaments (IFs) provide vital mechanical support in a broad array of cell types. Interference with this role causes cell fragility and accounts for a large number of human diseases. Gaining an understanding of the structure of IFs is paramount to understanding their function and designing therapeutic agents for relevant diseases. Here, we report the 2.6-Å resolution crystal structure of a complex of interacting 2B domains of keratin 5 (K5) and K14. K5 and K14 form a long-range, left-handed coiled coil, with participating α helices aligned in parallel and in register. Follow-up mutagenesis revealed that specific contacts between interacting 2B domains play a crucial role during 10-nm IF assembly, likely at the step of octamer-octamer association. The resulting structural model represents an atomic-resolution visualization of 2B-2B interactions important to filament assembly and provides insight into the defects introduced by mutations in IF genes associated with human skin diseases.


Assuntos
Queratina-14/química , Queratina-14/metabolismo , Queratina-5/química , Queratina-5/metabolismo , Mutação , Animais , Cristalografia por Raios X , Humanos , Filamentos Intermediários/metabolismo , Queratina-14/genética , Queratina-5/genética , Camundongos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Células NIH 3T3 , Domínios Proteicos , Multimerização Proteica , Estrutura Secundária de Proteína
19.
Cancer Med ; 8(13): 6106-6113, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31436046

RESUMO

Although targeting DNA repair signaling pathways has emerged as a promising therapeutic for skin cancer, the relevance of DNA damage responses (DDR) in the development and survival of nonmelanoma skin cancer (NMSC), the most common type of skin cancer, remains obscure. Here, we report that Src-associated substrate during mitosis of 68 kDa (Sam68), an early signaling molecule in DDR, is elevated in skin tumor tissues derived from NMSC patients and skin lesions from Gli2-transgenic mice. Downregulation of Sam68 impacts the growth and survival of human tumor keratinocytes and genetic ablation of Sam68 delays the onset of basal cell carcinomas (BCC) in Gli2-transgenic mice. Moreover, Sam68 plays a critical role in DNA damage-induced DNA repair and nuclear factor kappa B (NF-κB) signaling pathways in keratinocytes, hence conferring keratinocyte sensitivity to DNA damaging agents. Together, our data reveal a novel function of Sam68 in regulating DDR in keratinocytes that is crucial for the growth and survival of NMSC.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas de Ligação a RNA/genética , Neoplasias Cutâneas/patologia , Animais , Linhagem Celular , Dano ao DNA , Reparo do DNA , Feminino , Humanos , Masculino , Camundongos Transgênicos , NF-kappa B/metabolismo , Transdução de Sinais , Neoplasias Cutâneas/genética , Proteína Gli2 com Dedos de Zinco/genética
20.
Hum Mol Genet ; 28(13): 2255-2270, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31220272

RESUMO

The type I intermediate filament keratin 16 (KRT16 gene; K16 protein) is constitutively expressed in ectoderm-derived appendages and in palmar/plantar epidermis and is robustly induced when the epidermis experiences chemical, mechanical or environmental stress. Missense mutations at the KRT16 locus can cause pachyonychia congenita (PC, OMIM:167200) or focal non-epidermolytic palmoplantar keratoderma (FNEPPK, OMIM:613000), which each entail painful calluses on palmar and plantar skin. Krt16-null mice develop footpad lesions that mimic PC-associated PPK, providing an opportunity to decipher its pathophysiology, and develop therapies. We report on insight gained from a genome-wide analysis of gene expression in PPK-like lesions of Krt16-null mice. Comparison of this data set with publicly available microarray data of PPK lesions from individuals with PC revealed significant synergies in gene expression profiles. Keratin 9 (Krt9/K9), the most robustly expressed gene in differentiating volar keratinocytes, is markedly downregulated in Krt16-null paw skin, well-ahead of lesion onset, and is paralleled by pleiotropic defects in terminal differentiation. Effective prevention of PPK-like lesions in Krt16-null paw skin (via topical delivery of the Nrf2 inducer sulforaphane) involves the stimulation of Krt9 expression. These findings highlight a role for defective terminal differentiation and loss of Krt9/K9 expression as additional drivers of PC-associated PPK and highlight restoration of KRT9 expression as a worthy target for therapy. Further, we report on the novel observation that keratin 16 can localize to the nucleus of epithelial cells, implying a potential nuclear function that may be relevant to PC and FNEPPK.


Assuntos
Queratina-16/genética , Queratina-9/metabolismo , Queratinócitos/citologia , Ceratodermia Palmar e Plantar/genética , Animais , Diferenciação Celular , Derme/efeitos dos fármacos , Derme/fisiopatologia , Células HeLa , Humanos , Interleucina-1/genética , Interleucina-1/metabolismo , Isotiocianatos/uso terapêutico , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Queratina-16/metabolismo , Queratina-9/genética , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Queratinas/metabolismo , Ceratodermia Palmar e Plantar/tratamento farmacológico , Ceratodermia Palmar e Plantar/etiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Mutação de Sentido Incorreto , Fator 2 Relacionado a NF-E2/metabolismo , Transdução de Sinais , Sulfóxidos , Análise Serial de Tecidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...